Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38399719

RESUMO

The successful advancement of xenotransplantation has led to the development of highly sensitive detection systems for the screening of potentially zoonotic viruses in donor pigs and preventing their transmission to the recipient. To validate these methods, genetically modified pigs generated for xenotransplantation, numerous minipigs and other pig breeds have been tested, thereby increasing our knowledge concerning the pig virome and the distribution of pig viruses. Of particular importance are the porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV) and the hepatitis E virus genotype 3 (HEV3). PCMV/PRV has been shown to reduce the survival time of pig transplants in non-human primates and was also transmitted in the first pig heart transplantation to a human patient. The main aim of this study was to determine the sensitivities of our methods to detect PCMV/PRV, HEV3, porcine lymphotropic herpesvirus-1 (PLHV-1), PLHV-2, PLHV-3, porcine circovirus 2 (PCV2), PCV3, PCV4 and porcine parvovirus 1 (PPV1) and to apply the methods to screen indigenous Greek black pigs. The high number of viruses found in these animals allowed for the evaluation of numerous detection methods. Since porcine endogenous retroviruses (PERVs) type A and B are integrated in the genome of all pigs, but PERV-C is not, the animals were screened for PERV-C and PERV-A/C. Our detection methods were sensitive and detected PCMV/PRV, PLHV-1, PLHV-1, PLHV-3, PVC3 and PERV-C in most animals. PPV1, HEV3, PCV4 and PERV-A/C were not detected. These data are of great interest since the animals are healthy and resistant to diseases.

2.
Viruses ; 15(7)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37515304

RESUMO

Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials.


Assuntos
Quimerismo , Retrovirus Endógenos , Humanos , Suínos , Animais , Papio , Retrovirus Endógenos/genética , Transplante Heterólogo , RNA
3.
PLoS One ; 18(6): e0281521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37319233

RESUMO

Dippity Pig Syndrome (DPS) is a well-known but rare complex of clinical signs affecting minipigs, which has not been thoroughly investigated yet. Clinically affected animals show acute appearance of red, exudating lesions across the spine. The lesions are painful, evidenced by arching of the back (dipping), and the onset of clinical signs is generally sudden. In order to understand the pathogenesis, histological and virological investigations were performed in affected and unaffected Göttingen Minipigs (GöMPs). The following DNA viruses were screened for using PCR-based methods: Porcine cytomegalovirus (PCMV), which is a porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, PLHV-3), porcine circoviruses (PCV1, PCV2, PCV3, PCV4), porcine parvovirus 1 (PPV1), and Torque Teno sus viruses (TTSuV1, TTSuV2). Screening was also performed for integrated porcine endogenous retroviruses (PERV-A, PERV-B, PERV-C) and recombinant PERV-A/C and their expression as well as for the RNA viruses hepatitis E virus (HEV) and SARS-CoV-2. Eight clinically affected and one unaffected GöMPs were analyzed. Additional unaffected minipigs had been analyzed in the past. The analyzed GöMPs contained PERV-A and PERV-B integrated in the genome, which are present in all pigs and PERV-C, which is present in most, but not all pigs. In one affected GöMPs recombinant PERV-A/C was detected in blood. In this animal a very high expression of PERV mRNA was observed. PCMV/PRV was found in three affected animals, PCV1 was found in three animals with DPS and in the unaffected minipig, and PCV3 was detected in two animals with DPS and in the unaffected minipig. Most importantly, in one animal only PLHV-3 was detected. It was found in the affected and unaffected skin, and in other organs. Unfortunately, PLHV-3 could not be studied in all other affected minipigs. None of the other viruses were detected and using electron microscopy, no virus particles were found in the affected skin. No porcine virus RNA with exception of PERV and astrovirus RNA were detected in the affected skin by next generation sequencing. This data identified some virus infections in GöMPs with DPS and assign a special role to PLHV-3. Since PCMV/PRV, PCV1, PCV3 and PLHV-3 were also found in unaffected animals, a multifactorial cause of DPS is suggested. However, elimination of the viruses from GöMPs may prevent DPS.


Assuntos
Betaherpesvirinae , COVID-19 , Retrovirus Endógenos , Suínos , Animais , Porco Miniatura , Transplante Heterólogo , SARS-CoV-2
4.
Arch Virol ; 168(2): 55, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609605

RESUMO

Porcine cytomegalovirus (PCMV), a porcine roseolovirus (PRV) that is closely related to human herpesviruses 6 and 7, is commonly found in commercial pigs. PCMV/PRV is important in xenotransplantation, because in preclinical trials in which pig organs were transplanted into non-human primates, transmission of PCMV/PRV was shown to be associated with significantly reduced survival of the xenotransplants. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient worldwide and apparently contributed to the death of the patient. The prevalence of PCMV/PRV in wild boars is largely unknown. In this study, we screened wild boars from several areas of northern Italy and Germany to test for the presence of PCMV/PRV using PCR-based and Western blot assays. By Western blot analysis, 54% and 82% of Italian and German wild boars, respectively, were found to be PCMV/PRV positive, while 36% and 60%, respectively, tested positive by real-time polymerase chain reaction (PCR). These data indicate that the virus is common in German and Italian wild boars and that the Western blot assay detected a PCMV/PRV infection more often than did real-time PCR. The data also indicate that pigs raised for xenotransplantation should be protected from contact with materials from wild boars and commercial pigs.


Assuntos
Infecções por Citomegalovirus , Roseolovirus , Doenças dos Suínos , Suínos , Animais , Humanos , Citomegalovirus/genética , Primatas , Reação em Cadeia da Polimerase em Tempo Real , Sus scrofa , Doenças dos Suínos/epidemiologia
5.
Virol J ; 20(1): 15, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707837

RESUMO

BACKGROUND: Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS: DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS: PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION: PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.


Assuntos
Citomegalovirus , Roseolovirus , Feminino , Animais , Suínos , Humanos , Transplante Heterólogo , Líquido Folicular , Roseolovirus/genética , Ovário , Primatas , Clonagem Molecular
6.
Microorganisms ; 10(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336226

RESUMO

Erythema multiforme in pigs is an acute, self-limiting disease characterized by red skin areas and often associated with anorexia, fever and respiratory problems. The cause of the disease remains unknown. In a recent study, animals of a commercial breeding herd in Greece were examined, and all animals were found seropositive for porcine reproductive and respiratory syndrome virus (PRRSV). However, neither PRRSV and porcine circovirus type 2 (PCV2) viremia nor antibodies against Aujeszky's disease virus, African swine fever virus and classical swine fever virus were detected. Here, an extended examination of these pigs was performed on a wide range of porcine viruses using highly sensitive polymerase chain reaction (PCR)-based methods. Affected skin of five animals revealed the presence of porcine lymphotropic herpesvirus-1 (PLHV-1) in all cases, PLHV-2 in one animal and PLHV-3 in four animals. However, neither porcine cytomegalovirus (PCMV) nor porcine circoviruses (PCV1, PCV2, PCV3 and PCV4) were detected. In blood samples, PLHV-1 was present in two animals and PLHV-2, PCV2 and PCV3 in one individual, with PCMV, PCV1 and PCV4 in none of the animals. In one animal, four viruses were found in the blood (PLHV-1, PLHV-2, PCV2 and PCV3). A PRRSV viremia was also not detected. All animals carried porcine endogenous retrovirus C (PERV-C) in their genome, but recombinant PERV-A/C was not detected. The results suggest that porcine viruses may be involved in erythema multiforme in these animals and that further studies are needed to assess the role of these pathogens in the disease.

7.
Virol J ; 19(1): 30, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189916

RESUMO

BACKGROUND: Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. METHODS: The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. RESULTS: PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. CONCLUSION: These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells.


Assuntos
Retrovirus Endógenos , Animais , Retrovirus Endógenos/genética , Humanos , Leucócitos Mononucleares , Provírus/genética , Suínos , Porco Miniatura/genética , Transplante Heterólogo
8.
Microorganisms ; 9(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946218

RESUMO

Minipigs play an important role in biomedical research and have also been used as donor animals in xenotransplantation. To serve as a donor in xenotransplantation, the animals must be free of potential zoonotic viruses, bacteria and parasites. Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated as most of the other pig viruses can. PERV-A and PERV-B infect human cells in cell culture and are integrated in all pigs, whereas PERV-C infects only pig cells and it is found in many, but not all pigs. Minipigs are known for a high prevalence of recombinant PERV-A/C viruses able to infect human cells (Denner and Schuurman, Viruses, 2021;13:1869). Here, Mini-LEWE minipigs are screened for the first time for pig viruses including PERV. Peripheral blood mononuclear cells (PBMCs) from 10 animals were screened using PCR-based methods (PCR, RT-PCR, and real-time PCR). In comparison with our previous screening assays, numerous improvements were introduced, e.g., the usage of gene blocks as a PCR standard and foreign RNA to control reverse transcription in RT-PCR. Using these improved detection methods, Mini-LEWE pigs were found to be negative for porcine cytomegalovirus (PCMV), porcine lymphotropic herpesviruses (PLHV-1, -2 and -3), porcine circoviruses (PCV1, 2, 3 and 4), porcine parvovirus (PPV) and hepatitis E virus (HEV). All animals carried PERV-A, PERV-B and PERV-C in their genome. PERV-A/C was not found. In contrast to all other minipig breeds (Göttingen minipigs, Aachen minipigs, Yucatan micropig, Massachusetts General Hospital miniature pigs), Mini-LEWE minipigs have less viruses and no PERV-A/C. Parasitological screening showed that none of the Mini-LEWE minipigs harbored ecto- and gastrointestinal parasites, but at least one animal tested positive for anti-Toxoplasma gondii antibodies.

9.
Methods Mol Biol ; 1934: 265-291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31256385

RESUMO

Palmitoylation or S-acylation is the posttranslational attachment of fatty acids to cysteine residues and is common among integral and peripheral membrane proteins. Palmitoylated proteins have been found in every eukaryotic cell type examined (yeast, insect, and vertebrate cells), as well as in viruses grown in these cells. The exact functions of protein palmitoylation are not well understood. Intrinsically hydrophilic proteins, especially signaling molecules, are anchored by long-chain fatty acids to the cytoplasmic face of the plasma membrane. Palmitoylation may also promote targeting to membrane subdomains enriched in glycosphingolipids and cholesterol or affect protein-protein interactions.This chapter describes (1) a standard protocol for metabolic labeling of palmitoylated proteins and also the procedures to prove a covalent and ester-type linkage of the fatty acids, (2) a simple method to analyze the fatty acid content of S-acylated proteins, (3) two methods to analyze dynamic palmitoylation for a given protein, and (4) protocols to study cell-free palmitoylation of proteins.


Assuntos
Proteínas/química , Proteínas/metabolismo , Acilação , Sequência de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Lipoilação , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem
10.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769343

RESUMO

Glycoprotein 3 (GP3) of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) consists of a cleaved signal peptide, a highly glycosylated domain, a short hydrophobic region, and an unglycosylated C-terminal domain. GP3 is supposed to form a complex with GP2 and GP4 in virus particles, but secretion of GP3 from cells has also been reported. We analyzed the membrane topology of GP3 from various PRRSV strains. A fraction of the protein is secreted from transfected cells, GP3 from PRRSV-1 strains to a greater extent than GP3 from PRRSV-2 strains. This secretion behavior is reversed after exchange of the variable C-terminal domain. A fluorescence protease protection assay shows that the C terminus of GP3, fused to green fluorescent protein (GFP), is resistant to proteolytic digestion in permeabilized cells. Furthermore, glycosylation sites inserted into the C-terminal part of GP3 are used. Both experiments indicate that the C terminus of GP3 is translocated into the lumen of the endoplasmic reticulum. Deletion of the conserved hydrophobic region greatly enhances secretion of GP3, and fusion of this domain to GFP promotes membrane anchorage. Bioinformatics suggests that the hydrophobic region forms an amphipathic helix. Accordingly, exchanging only a few amino acids in its hydrophilic face prevents secretion of GP3 and in its hydrophobic face enhances it. Exchanging the latter amino acids in the context of the viral genome did not affect release of virions, but released particles were not infectious. In sum, GP3 exhibits an unusual hairpin-like membrane topology that might explain why a fraction of the protein is secreted.IMPORTANCE PRRSV is the most important pathogen in the pork industry. It causes persistent infections that lead to reduced weight gain of piglets; highly pathogenic strains even kill 90% of an infected pig population. PRRSV cannot be eliminated from pig farms by vaccination due to the large amino acid variability between the existing strains, especially in the glycoproteins. Here, we analyzed basic structural features of GP3 from various PRRSV strains. We show that the protein exhibits an unusual hairpin-like membrane topology; membrane anchoring might occur via an amphipathic helix. This rather weak membrane anchor explains why a fraction of the protein is secreted from cells. Interestingly, PRRSV-1 strains secrete more GP3 than PRRSV-2. We speculate that secreted GP3 plays a role during PRRSV infection of pigs: it might serve as a decoy to distract antibodies away from virus particles.


Assuntos
Membrana Celular , Glicoproteínas , Fusão de Membrana , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas Virais , Substituição de Aminoácidos , Animais , Células CHO , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cricetulus , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Protein Eng Des Sel ; 26(9): 547-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873663

RESUMO

Hemagglutinin (HA), the trimeric spike of influenza virus, catalyzes fusion of viral and cellular membranes. We have synthesized the anchoring peptide including the linker, transmembrane region and cytoplasmic tail (HA-TMR-CT) in a cell-free system. Furthermore, to mimic the palmitoylation of three conserved cysteines within the CT, we chemically alkylated HA-TMR-CT using hexadecyl-methanethiosulfonate. While the nuclear magnetic resonance spectroscopy showed pure and refolded peptides, the formation of multiple oligomers of higher order impeded further structural analysis. Circular dichroism spectroscopy of both alkylated and non-alkylated HA-TMR-CT revealed an α-helical secondary structure. No major impact of the fatty acids on the secondary structure was detected.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H7N1/química , Peptídeos/química , Alquilação , Sequência de Aminoácidos , Escherichia coli/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , Vírus da Influenza A Subtipo H7N1/genética , Lipoilação , Mesilatos/química , Mimetismo Molecular , Dados de Sequência Molecular , Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Nat Methods ; 9(12): 1212-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142870

RESUMO

Membrane proteins are largely underrepresented among available atomic-resolution structures. The use of detergents in protein purification procedures hinders the formation of well-ordered crystals for X-ray crystallography and leads to slower molecular tumbling, impeding the application of solution-state NMR. Solid-state magic-angle spinning NMR spectroscopy is an emerging method for membrane-protein structural biology that can overcome these technical problems. Here we present the solid-state NMR structure of the transmembrane domain of the Yersinia enterocolitica adhesin A (YadA). The sample was derived from crystallization trials that yielded only poorly diffracting microcrystals. We solved the structure using a single, uniformly (13)C- and (15)N-labeled sample. In addition, solid-state NMR allowed us to acquire information on the flexibility and mobility of parts of the structure, which, in combination with evolutionary conservation information, presents new insights into the autotransport mechanism of YadA.


Assuntos
Adesinas Bacterianas/química , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Cristalização , Modelos Moleculares
13.
J Neurosci ; 31(49): 18149-54, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159126

RESUMO

Sustained neurotransmitter release at synapses during high-frequency synaptic activity involves the mobilization of synaptic vesicles (SVs) from the tightly clustered reserve pool (RP). Synapsin I (Syn I), a brain-specific peripheral membrane protein that undergoes activity-dependent cycles of SV association and dissociation, is implicated in RP organization via its ability to cluster SVs. Although Syn I has affinity for phospholipids, the mechanism for the reversible association of synapsin with SV membranes remains enigmatic. Here, we show that rat Syn I is able to sense membrane curvature via an evolutionary conserved amphipathic lipid packing sensor motif (ALPS). Deletion or mutational inactivation of the ALPS impairs the ability of Syn I to associate with highly curved membranes and with SVs. Furthermore, a Syn I mutant lacking ALPS displays defects in its ability to undergo activity-induced cycles of dispersion and reclustering in neurons and fails to induce vesicle clustering in vitro. Our data suggest a crucial role for ALPS-mediated sensing of membrane curvature in regulating synapsin function.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Lipossomos/metabolismo , Neurônios/citologia , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Linhagem Celular Transformada , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Masculino , Membranas Artificiais , Camundongos , Estrutura Terciária de Proteína/genética , Sinapsinas/genética , Vesículas Sinápticas/genética , Transfecção/métodos
14.
J Mol Biol ; 390(4): 662-71, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19447114

RESUMO

The contact area of neurotoxin II from Naja naja oxiana when interacting with the membrane-bound nicotinic acetylcholine receptor from Torpedo californica was determined by solid-state, magic-angle spinning NMR spectroscopy. For this purpose, the carbon signals for more than 90% of the residues of the bound neurotoxin were assigned. Differences between the solution and solid-state chemical shifts of the free and bound form of the toxin are confined to distinct surface regions. Loop II of the short toxin was identified as the main interaction site. In addition, loop III of neurotoxin II shows several strong responses defining an additional interaction site. A comparison with the structures of alpha-cobratoxin bound to the acetylcholine-binding protein from snail species Lymnaea stagnalis and Aplysia californica, and of alpha-bungarotoxin bound to an extracellular domain of an alpha-subunit of the receptor reveals different contact areas for long and short alpha-neurotoxins.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Receptores Nicotínicos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Neurotóxicas de Elapídeos/metabolismo , Técnicas In Vitro , Membranas/metabolismo , Dados de Sequência Molecular , Venenos de Moluscos/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Receptores Nicotínicos/metabolismo , Torpedo
15.
Chembiochem ; 6(9): 1679-84, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16138308

RESUMO

Uniformly 13C-,15N-labelled outer-membrane protein G (OmpG) from Escherichia coli was expressed for structural studies by solid-state magic-angle spinning (MAS) NMR. Inclusion bodies of the recombinant, labelled protein were purified under denaturing conditions and refolded in detergent. OmpG was reconstituted into lipid bilayers and several milligrams of two-dimensional crystals were obtained. Solid-state MAS NMR spectra showed signals with an apparent line width of 80-120 Hz (including homonuclear scalar couplings). Signal patterns for several amino acids, including threonines, prolines and serines were resolved and identified in 2D proton-driven spin-diffusion (PDSD) spectra.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Porinas/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalização , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular , Porinas/genética , Porinas/isolamento & purificação , Porinas/metabolismo , Prolina/química , Dobramento de Proteína , Treonina/química
16.
FEBS Lett ; 564(3): 319-24, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15111116

RESUMO

Solid-state magic-angle spinning nuclear magnetic resonance (NMR) has sufficient resolving power for full assignment of resonances and structure determination of immobilised biological samples as was recently shown for a small microcrystalline protein. In this work, we show that highly resolved spectra may be obtained from a system composed of a receptor-toxin complex. The NMR sample used for our studies consists of a membrane preparation of the nicotinic acetylcholine receptor from the electric organ of Torpedo californica which was incubated with uniformly 13C-,15N-labelled neurotoxin II. Despite the large size of the ligand-receptor complex ( > 290 kDa) and the high lipid content of the sample, we were able to detect and identify residues from the ligand. The comparison with solution NMR data of the free toxin indicates that its overall structure is very similar when bound to the receptor, but significant changes were observed for one isoleucine.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Estrutura Secundária de Proteína , Receptores Nicotínicos/química , Animais , Bungarotoxinas/química , Bungarotoxinas/metabolismo , Proteínas Neurotóxicas de Elapídeos/metabolismo , Bicamadas Lipídicas/química , Substâncias Macromoleculares , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Ensaio Radioligante , Receptores Nicotínicos/metabolismo , Torpedo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...